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How do we know we are changing the climate?

An Economist’s Guide to Climate Change Science     15

gradually increasing confidence of the scientific community can be understood by 
noting the envelope of model results published in association with the 2007 IPCC 
report (displayed ending in simulation year 2000) were less cleanly separated 
than those published in association with the 2013 IPCC report (displayed ending  
in 2010), although the separation visible through 2000 was already reflected in the 
IPCC’s 2007 statement that temperatures were “very likely due to anthropogenic 
greenhouse gas concentrations” (Table 2). 

It is now virtually certain (at least 99 percent probability) that the observed 
modern warming trend exceeds the bounds of natural variability (Bindoff et al. 
2013). Furthermore, humans are likely (with at least 66 percent probability) respon-
sible for 0.6°C–0.8°C of the observed 0.6°C of warming over 1951–2010. Values 
greater than 0.6°C are possible for the anthropogenic contribution because of the 
possibility that natural forcing and variability could otherwise impose a slightly 
negative baseline trend (for example, as a result of volcanic eruptions), a pattern 
which is visible in the control runs of Figure 2. 

Figure 2 
Average Annual Global Mean Surface Temperature, Compared to Distributions of 
Climate Model Simulations 

Sources: Data comes from Jones, Stott, and Christidis (2013), Morice, Kennedy, Rayner, and Jones (2012), 
and Taylor, Stouffer, and  Meehl (2012).
Note: This graph is best viewed in color; the electronic version of this article available at the JEP website 
is in color. The heavy black line shows observed average annual global mean surface temperature. 
The red [or light grey] distributions are exogenously “treated” with anthropogenic greenhouse gas 
emissions, while the blue [or light grey] distributions (shown only in the left panel) are “control” runs 
that only contain natural forcings. In the left panel, climate model distributions are from the Third 
Coupled Model Intercomparison Project (CMIP3) published in 2007 and displayed until 2000, and 
CMIP5 published in 2013 and displayed until 2010. In the right panel, all climate model projections 
come from CMIP5 in the moderate emissions scenario (RCP 4.5). Temperatures shown are relative to 
the 1880–1900 average. 
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Climate change in context
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Climate change in context
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Climate change in context
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Climate change as an economic problem
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The resources used to mitigate climate change should reflect the benefit of
these investments to society.
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Core scientific problem

The resources used to mitigate climate change should reflect the benefit of
these investments to society.

Ultimately, this requires that we distinguish between

Hypothesis 1: The climate has small impact on modern human society.

Hypothesis 2: The climate has a large impact.

(Thinkers have debated this issue for centuries.)

This is a hard problem because

! climate is high-dimensional
! human society is high-dimensional
! many confounding factors

S. Hsiang | Global Policy Laboratory
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Tackling the problem through research design

The Ideal Experiment

1. Take two identical planets.

2. Change the climate of one (treatment).

3. Compare to control planet.

The Quasi-Experiment (that we can actually do)

Step one: Reconstruct a history of each population’s physical exposure to
climatic conditions.

Step two: Estimate the e↵ect of changes over time for each population:

High climate exposure - “treatment”

Low climate exposure - “control”

S. Hsiang | Global Policy Laboratory
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Climate variable
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Limited Information Cyclone Reconstruction and

Integration for Climate and Economics (LICRICE)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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Super Typhoon Joan (Sening)
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All storms within a year (LICRICE)
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Direct damage: Insured loss in % state GDP (USA)
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Household economics after a typhoon (Philippines)
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Macroeconomics: Theories vs. Evidence
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Macroeconomics: Theories vs. Evidence
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Global generalizability
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Repeated shocks slow growth

“Sandcastle depreciation”: �̄ ⇡ 1
s2�s1

R s2
s1

�(t)dt

growth = investment � �̄ � pop growth � tech growth

Hsiang & Jina (AER, 2015)
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Long run evidence consistent w/ “sandcastle depreciation”
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Comparing cyclones to other macroeconomic events

Event Growth Duration Risk

Temperature " (+1�C)*1 �1.0% 10 yrs 6.4%
Civil war2 �3.0% 10 yrs 6.3%
Taxes " (+1% GDP)**3 �3.1% 4 yrs †16.8%
1-� cyclone �3.6% 20 yrs 14.4%
Currency crisis2 �4.0% 10 yrs 34.7%
Executive constraints #2 �4.0% 10 yrs 3.7%
90-percentile cyclone �7.4% 20 yrs 5.8%
Banking crisis2 �7.5% 10 yrs 15.7%
Financial crisis4 �9.0% 2 yrs <0.1%
99-percentile cyclone �14.9% 20 yrs 0.6%
Democratization5 +21.2% 30 yrs 1.4%

*Poor countries only. **USA only. †Number of quarters with any tax change.

1Dell, Jones & Olken (AEJ: Macro, 2012), 2Cerra & Saxena (AER, 2008),
3Romer & Romer (AER, 2010), 4Reinhart & Rogo↵ (AER 2009), 5 Acemoglu,
Naidu, Restrepo, Robinson (NBER, 2014)

Hsiang & Jina (2014)



Entering a “new normal” ?
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Undoing 26 years of Puerto Rican growth in 12 hours

Hsiang & Houser (New York Times, 2017)



Climate Change ! � Hurricanes ! � Growth

NPV roughly $9.7 trillion (3% discount rate)

Climate Change ! � Temperature ! � Growth?
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Why might temperature matter?

MACKWORTH, N. H., High incentives versus hot and humid atmospheres in a physical effort 
task , British Journal of Psychology. General Section, 38:2 (1947:Dec.) p.90 

British Naval Experiments
C. Mackworth (1947)

British Journal of Psychology
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Temperature a↵ects productivity of labor & capital
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Building a macro-economy from
temperature-sensitive units

Td - temperature on day d of year t
Kj - capital in sector j with productivity AK

j

Lj - labor is sector j with productivity AL
j

Each day, based on temperature, capital and labor may be optimally
reallocated between sectors:

qj(Td) = (AK
j (Td)Kj(Td))

↵(AL
j (Td)Lj(Td))

1�↵

Optimal supply (q⇤) and temperature-sensitive demand a↵ects prices (p).

Repeated daily:

annual revenuet =
365X

d=1

X

j

pj(Td) · q⇤j (Td)| {z }
daily income sector j

Deryugina & Hsiang (2014)
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How should micro productivity map to macro?

probability mass = m1

Annual temperature
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Global non-linear response of growth to temperature
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Historical marginal e↵ect of +1C temperature on growth

Burke, Hsiang, Miguel (2015)



Using within-country variation to estimate a global
functionRESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved

Burke, Hsiang, Miguel (Nature, 2015)
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Rich vs Poor? Early vs late?
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Really in rich countries? Check in USA
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E↵ect in USA is stable over time
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Replication with alternative data sets & samples

India China
Figures

Figure 1: Effects of annual average temperature on GDP growth rates.

The figure displays the nonlinear relationship between annual average temperature and GDP
growth rates for the fiscal years 1982-83 to 2014-15. The black line represents the impact
of temperature on growth, relative to the optimum. The shaded blue area denotes the 95%
confidence interval. The regression model controls for one-year lagged growth rates, state
fixed effects, year fixed effects, and precipitation. The histogram shows the distribution of
annual temperature.

21 Results

Main results

We first present baseline regression results estimated using Eq. (3). To visualize these estimates, Fig. 2 plots the response
function between daily temperature and output, as well as the three components of output: TFP, labor, and capital inputs.
Specifically, it plots the point estimates and associated 95% confidence intervals for �m in Eq. (3) for each outcome. Estimates
are relative to daily temperature between 50–60 °F, the omitted reference group, and are shown for each temperature bin in
degrees Fahrenheit as well as in degrees Centigrade.16

Panel A in Fig. 2 depicts the temperature-output relationship and shows an inverted U-shaped relationship. The negative
effects of extremely high temperatures (above 90 °F) are both economically and statistically significant. The point estimate
suggests that an extra day with temperature larger than 90 °F decreases output by 0.45%, relative to an extra day with
temperature between 50–60 °F.

To put this in value terms, the average output of a sample firm was $1.82 million in 2007 dollars. Thus, the effect of an
extra day with temperature above 90 °F lowers output by $8,160 for the average firm. At the aggregate level, the average
total output of manufacturing firms in our sample during 1998-2007 was $334 billion in 2007 dollars. If all firms in our
sample were to jointly experience an extra day with temperatures above 90 °F instead of a day between 50–60 °F, total
output would decrease by $1.50 billion.

To provide a point of comparison with prior other studies, if there were a 1 °F shift to the entire annual distribution of
daily temperature and the manufacturing output share of Chinese GDP were to remain 32%, our results imply a 0.92%
reduction in Chinese GDP from temperature impacts in the manufacturing sector alone. This is consistent with Hsiang
(2010) and Dell et al. (2012)'s evidence from other parts of the world.

We next turn to exploring which component of output drives the temperature-output relationship shown in panel A.
Panels B, C, and D of Fig. 2 plot the response function between daily temperature and TFP, labor, and capital inputs, re-
spectively. The temperature-TFP relationship closely mirrors the shape of the temperature-output relationship. The mag-
nitudes of each set of point estimates are also mostly similar. The extreme high temperature effect depicted in panel B is
slightly larger than in panel A, though the two point estimates do not appear to be statistically different.

Fig. 2. Estimated Effects of Daily Temperature on Manufacturing Output, TFP, Labor Input, and Capital Input Notes: Panels show the estimated temperature-
log output relationship (panel A), temperature-log TFP relationship (panel B), temperature-log labor relationship (panel C), and temperature-log capital
relationship (panel D). Figures show point estimates in blue and the associated 95% confidence intervals in gray. Each panel is a separately estimated
regression using Eq. (3) and includes firm fixed effects, year-by-region fixed effects, and year-by-sector fixed effects. 50–60 °F is the omitted temperature
category. Standard errors are clustered at firm and county-year levels. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

16 Centigrade bin boundaries are converted from Fahrenheit and rounded to the nearest integer to conserve space.

P. Zhang et al. / Journal of Environmental Economics and Management 88 (2018) 1–17 7

Jain et al (2019) Zhang et al (2018)

Also: Brazil, Indonesia, Europe, etc.
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962 World Bank HH surveys + WPID dataset
9620 country-year-decile observations 1977-2012
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Is it really a growth e↵ect? (Global)
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Is it really a growth e↵ect? (USA)

-0.15

-0.1

-0.05

0

0.05

15 25 35 45 55 65 75 85

Daily temperatures in Fahrenheit

-10 -5 0 5 10 15 20 25 >30

Daily temperatures in Celsius

Lo
g 

an
nu

al
 to

ta
l i

nc
om

e 
pe

r c
ap

ita
 ×

 1
00

15 25 35 45 55 65 75 85

Daily temperatures in Fahrenheit

-10 -5 0 5 10 15 20 25 >30

Daily temperatures in Celsius

Effect of current year Effect of prior year

Deryugina & Hsiang (2017)

S. Hsiang | Global Policy Laboratory



How to account for adaptation?

1. Adaptations to climate may alter (attenuate) climate impacts.

2. But the costs of these adaptations must be accounted for as a burden.

3. Full accounting is fundamentally di�cult because adaptation involves
many unobserved adjustments.

One solution: Take a “top down” view of the macroeconomy and
estimate the “marginal product of climate.” (Deryugina & Hsiang, 2017)

Why this works: All adaptations are reallocations of resources, with costs
equal to opportunity costs.

! The net benefit of all adaptations will be captured in total revenue of
the economy.
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Revenue maximization in general equilibrium

b2

b1

p(C)

Y(C,b*)

b*(C)

U(C,b)

production possibility set

better-than set

PPF(C,b)

b2

b1

Y(C2,b*)b*(C1)

Y(C1,b*)

b*(C2)

Markets endogenously maximize total revenue in general equilibrium
(Koopmans, 1957):

b⇤(C) = argmax
b

Y (C,b(C)) | p(C),U(C,b)



The “Marginal Product of Climate”
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Deryugina & Hsiang (2017)
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Projecting forward: avg loss = 23% World GDP

Burke, Hsiang & Miguel (Nature 2015)
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A poorer, more uncertain, more unequal world
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Thank you

www.globalpolicy.science
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Di↵erences over space or time?
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